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1 Introduction

1.1 Motivation and Problematic

Separation logic is a successful formalism on program verification[30]. It partly originates from
the logic of bunched implications[31] featuring two logical connectives: ∗ and −∗, which resemble
normal conjunction and implication in the sense that:

A ∗B ⊢ C iff A ⊢ B −∗ C

The standard model in terms of program memory provides a simple way to understand them:
Each proposition in separation logic specifies some property holding on a chunk of heap memory,
they are often called heap predicates or spatial predicates. The separating conjunction A ∗
B specifies a heap composed of two disjoint parts, one satisfying A and the other satisfying
B, while the separating implication A −∗ B specifies a heap which would satisfy B whenever
extended with a disjoint heap satisfying A. Such interpretation provides a concise representation
for non-aliasing property, making separation logic especially useful for reasoning about heap-
manipulating programs in a modular fashion.

Over the past years, there have been many evolutions of separation logic. Among them,
Iris[21] is a higher-order concurrent separation logic framework. It provides a simple set of
language-independent, primitive rules useful for reasoning about concurrent, heap-manipulating
programs. The expressive power of Iris has led to many applications in verifying fine-grained
concurrent programs[27, 39], secure language implementations[37, 19, 25], and certified operating
systems[13, 12].

The wide application of separation logic has created a strong demand for corresponding
automated deduction tools, whose development remains a challenging task. In fact, separation
logic with equality theory and a two-record-field points-to predicate l 7→ (v1, v2) is already
undecidable[11], and decidability results often rely on restricting the logic to a specialized set of
predicates and excluding the separating implication −∗. For example, most existing automated
deduction tools for separation logic deal with (variants of) the symbolic heap fragment1[8].
This fragment excludes separating implication and defines two predicates: the single-record-field
points-to predicate l 7→ v and a predicate for describing singly linked list segments. Formulae in
symbolic heap have the syntactic form:

(ϕ1 ∧ ϕ2 ∧ · · · ) ∧ (ψ1 ∗ ψ2 ∗ · · · )

where ϕi denotes (dis)equalities, and ψi denotes heap predicates. This separation of a non-
spatial part from a separating conjunction of spatial predicates has become a practical design
choice for separation logic tools. For example, assertions in Verified Software Toolchain[5] admit
the form[6]:

PROP(ϕ1;ϕ2; · · · )LOCAL(v1; v2; · · · )SEP(ψ1;ψ2; · · · )

which additionally includes a LOCAL part describing the values of C program variables, irrele-
vant to the PROP and SEP parts. Iris proof mode[22] also follows that pattern. When reasoning
in separation logic using the Rocq proof assistant[4], it provides a proof context divided into
three parts: the Rocq context containing variables and non-spatial hypotheses, the spatial con-
text containing spatial predicates, along with a persistent context containing persistent spatial
predicates2.

1In SL-COMP 2018[2], a competition of solvers for separation logic, only one division among eleven contains
problem not based on symbolic heap, and the only participant is CVC4[7].

2See Section 3 for the definition of persistent predicates.
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These tools have proven useful in software verification, where the required predicates are
similar to those of symbolic heap. However, they fall short in supporting the development of
new variants of separation logic. For example, many recent works in the Iris literature make
use of custom “ghost theories”[19, 18, 16], that is, purely logical libraries where one or more
logical predicates are defined, together with the laws they satisfy. It would be useful to develop
a tool capable of reasoning in those ghost theories, in order to verify their consistency, or to
facilitate their use in proofs, possibly via dedicated tactics as in Diaframe[29]. To that end, the
tool needs to support user-defined predicates, separating implication, and common theories. In
this internship report, I present the design and implementation of a prototype meeting these
requirements.

Concretely, this tool attempts to prove P ⊢ ⊥, where P is a ghost theory given as input.
Appendix A illustrates a ghost theory together with an inconsistency proof that the tool can
generate in graphical form. The code for this tool is available on GitHub3.

1.2 Context and Progress of the Internship

This M1 research internship was carried out in the Cambium team at INRIA Paris under the
supervision of François Pottier. The internship topic is on designing and implementing a decision
procedure for a fragment of the Iris separation logic. This topic combines research, algorithm
design and OCaml programming, due to the foreseeable engineering effort involved in building
an automated deduction tool and optimizing its performance. Mr. Pottier anticipated some
difficulties in the process, but considered it both fun and instructive.

My first task was to implement an incomplete decision procedure for a simple propositional
separation logic defined in Section 3, with which we are already able to write non-trivial problem
instances. This decision procedure is incomplete because it may give “unknown” as answer
when the exploration exceeds the specified depth limit. We then tested the algorithm on those
instances, and profiled the implementation to find possible optimizations. Subsequent steps
of the internship followed a similar pattern: for each extension, we tried to find interesting
examples and efficient implementations. Some of these examples were adopted from the Rocq
development of Iris [1], others were generated randomly. It turns out that the lack of real-world
problem instances posed challenges in the validation of our design and implementation choices,
as synthetic data may fail to capture the structure of realistic use cases.

Even though most other automated deduction tools do not share with us their target logic or
reasoning mechanism, we nonetheless share a set of common implementation challenges, such as
efficient term indexing and subsumption checking techniques. During my internship, some effort
has been dedicated to identifying such shared challenges, as well as to comparing our approach
with that of existing tools. This made me more familiar with the research area of automated
theorem proving.

As part of my internship activities, I listened to various talks on separation logic, type theory,
and mechanized mathematics. Thanks to Mr. Pottier, I also had the opportunity to attend the
Iris Workshop 2025 held at INRIA Paris, which involves Iris-related research.

1.3 Structure of the Report

The remainder of this report is organized as follows: Section 2 introduces some formalism and
notions necessary for understanding certain parts of the report. A first fragment of separation
logic that the tool deals with is defined in Section 3, with which I present the core proof search
algorithm and some implementation details. Two subsequent sections focus on extending this

3https://github.com/Laplace-Demon/IrisSearch
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logic with first-order quantification and disjunction, both being basic components of Iris formulae.
Finally, I conclude this report in Section 6 with discussions on possible directions of further
development of this tool.

2 Preliminaries

We fix a universe Val of values and consider formulae in many-sorted first-order logic over a
signature Σ = (Sort,Pred ∪ {≃},Const,Var), where Sort is the set of sort symbols, Pred is the
set of predicate symbols, Const is the set of constant symbols, and Var is the infinite set of
variables disjoint with Const. Each vS ∈ Val is assigned a sort symbol S ∈ Sort, denoting the
sort of that value. Thus, for each sort symbol S ∈ Sort, there exists a set Val(S) ⊂ Val consisting
of values of that sort. The family {Val(S) | S ∈ Sort} forms a partition of Val.

We write D∗ to denote the set of all finite sequences over D, i.e. D∗ =
⋃

n∈ND
n, and use

boldface to denote sequences. Whenever the distinction between constants and variables is not
essential, we refer to both as members in the set Term = Const ⊎ Var. Each PS ∈ Pred is
associated with a sequence of sort symbols S ∈ Sort∗, denoting the parameter sort sequence of
that predicate. Each tS ∈ Term is associated with one sort symbol S ∈ Sort, denoting the sort
of that term. We write (t1, t2, · · · )(S1,S2,··· ) as shorthand for the sequence (tS1

1 , tS2
2 , · · · ). For

PS ∈ Pred and tS
′ ∈ Term∗, the predicate PS(tS

′
) is well-sorted if its parameter sort sequence

S coincides with the argument sort sequence S′. There is also a distinguished binary predicate
≃. For tS , t′S

′ ∈ Term, the predicate tS ≃ t′S
′
is well-sorted if S coincides with S′. We assume

all predicates are well-sorted and omit sort symbols whenever possible.

2.1 Separation Logic

In this subsection, we define the syntax and semantics of the separation logic fragment considered
in this report. They are essential for understanding the logic.

Syntax Let t, t′ range over Term, t range over Term∗, x range over Var, and P range over
Pred. The language of separation logic is the set of formulae generated by the grammar:

ϕ := P (t) | □ϕ1 | ϕ1 ∗ ϕ2 | ϕ1 −∗ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∀x.ϕ1 | ∃x.ϕ1 | t ≃ t′ | t ̸≃ t′ | ⊥ | ⊤

An atomic formula, or atom, is P (t), ⊥, ⊤, or □ϕ, where ϕ is an atom. We denote by Atom
the set of atomic formulae under the fixed signature Σ. In the following, we use the standard
notations

∃(x1, x2, · · · ).ϕ1 ≜ ∃x1.∃x2. · · · .ϕ1
∀(x1, x2, · · · ).ϕ1 ≜ ∀x1.∀x2. · · · .ϕ1

Semantics of the points-to fragment To ease understanding, we first give the semantics of
that separation logic limited to the single-record-field points-to predicate. We fix two sorts Loc
and Data such that Val(Loc) is countably infinite, and contains one element nullLoc. Recall the
syntax of the points-to predicate:

ϕ := · · · | xLoc 7→ yData

The model (s, h) of a separation logic formula consists of a stack s and a heap h. The stack is a
finite partial function s : Var ⇀fin Val from variables to values, and the heap is a finite partial
function h : Val(Loc)⇀fin Val(Data) from locations to data. We say (s, h) is a model of ϕ when
the relation s, h ⊨ ϕ holds. The relation s, h ⊨ ϕ is defined inductively as follows:
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s, h ⊨ x 7→ y iff h(x) = y

and x ̸= nullLoc

s, h ⊨ □ϕ1 iff s, ∅ ⊨ ϕ1
s, h ⊨ ϕ1 ∗ ϕ2 iff exists h1, h2

that h = h1 ⊎ h2
and s, h1 ⊨ ϕ1
and s, h2 ⊨ ϕ2

s, h ⊨ ϕ1 −∗ ϕ2 iff for every h′

if dom(h) ∩ dom(h′) = ∅
and s, h′ ⊨ ϕ1
then s, h ⊎ h′ ⊨ ϕ2

s, h ⊨ ϕ1 ∧ ϕ2 iff s, h ⊨ ϕ1
and s, h ⊨ ϕ2

s, h ⊨ ϕ1 ∨ ϕ2 iff s, h ⊨ ϕ1
or s, h ⊨ ϕ2

s, h ⊨ ∀x.ϕ1 iff for every x

we have s, h ⊨ ϕ1(x)

s, h ⊨ ∃x.ϕ1 iff exists x

that s, h ⊨ ϕ1(x)

s, h ⊨ x ≃ y iff s(x) = s(y)

s, h ⊨ x ̸≃ y iff s(x) ̸= s(y)

s, h ⊨ ⊤ iff true

The formula ϕ is consistent or satisfiable if there exists (s, h) such that s, h ⊨ ϕ holds. it is
valid if for every (s, h), the relation s, h ⊨ ϕ holds.

We can gain some basic understanding of the semantics of separation logic. The stack s
can be thought of as the stack frame in a typical programming language runtime, it contains
an environment mapping each program variable to its current value. The heap h models the
dynamically allocated memory of the program, it is specified by the points-to predicate x 7→ y,
where x is the memory address (pointer) and y the data stored in that memory location.

□ϕ stands for the persistence modality[20] of Iris, this means ϕ holds forever and can be
arbitrarily duplicated. Consequently, ϕ is independent of any particular heap.

Affine and linear separation logic Some developments of separation logic, including the
symbolic heap fragment, would define certain rules as:

s, h ⊨ x 7→ y iff h = {(x, y)}
and x ̸= nullLoc

s, h ⊨ □ϕ1 iff h = ∅
and s, ∅ ⊨ ϕ1

s, h ⊨ x ≃ y iff s(x) = s(y)

and h = ∅
s, h ⊨ x ̸≃ y iff s(x) ̸= s(y)

and h = ∅

These definitions impose stricter constraints on the semantics by requiring the heap to match
an exact shape. In other words, the model must contain precisely the heap predicates described,
no additional being allowed. We call this variant linear separation logic. By contrast, under the
previous semantics, the heap may satisfy additional predicates beyond those explicitly mentioned
in the formula, we call this variant affine separation logic. Since Iris is based on affine separation
logic, the fragment we study here also follows the affine interpretation. In particular, affine
separation logic supports the weakening rule presented in Section 3.

Semantics of the propositional fragment As can be observed from the semantics above,
the formulation of the disjointness property carried by separation logic connectives depends on
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how the heap is defined, which itself depends on the concrete interpretation of heap predicates.
Therefore, an abstration over heap predicates requires a general model of heap to capture these
properties.

We define the structure of a separation algebra[10] (H, ◦, ∅), where H is the set of heaps, ◦
is a partial binary operation representing the heap composition, and ∅ is a unit element for ◦
representing the empty heap. Disjointness is captured by the partiality of ◦, where the com-
position of two heaps is undefined if they overlap. We also require ◦ to be commutative and
associative where defined. This structure is sometimes called a partial commutative monoid, and
some definitions include the cancellativity property, but it is optional in our work.

Each predicate is satisfied on a (possibly empty) set of heap. We define the valuation

V : Atom⇀ P(H)

assigning each closed atomic formula the set of heaps satisfying it. V is defined as a partial
function in order to rule out atomic formulae containing free variables, or not of the form P (t).
No heap satisfies ⊥, and every heap satisfies ⊤, so we have V (⊥) = ∅ and V (⊤) = H.

Given a separation algebra (H, ◦, ∅) and a valuation V , the semantic rules are defined as
follows.

s, h ⊨ P (t) iff V (P (t)) is defined

and exists h′ ∈ V (P (t))

that h′ ⊆ h
s, h ⊨ □ϕ1 iff s, ∅ ⊨ ϕ1
s, h ⊨ ϕ1 ∗ ϕ2 iff exists h1, h2

that h = h1 ◦ h2
and s, h1 ⊨ ϕ1
and s, h2 ⊨ ϕ2

s, h ⊨ ϕ1 −∗ ϕ2 iff for every h′

if h ◦ h′ is defined
and s, h′ ⊨ ϕ1
then s, h ◦ h′ ⊨ ϕ2

s, h ⊨ ϕ1 ∧ ϕ2 iff s, h ⊨ ϕ1
and s, h ⊨ ϕ2

s, h ⊨ ϕ1 ∨ ϕ2 iff s, h ⊨ ϕ1
or s, h ⊨ ϕ2

s, h ⊨ ∀x.ϕ1 iff for every x

we have s, h ⊨ ϕ1(x)

s, h ⊨ ∃x.ϕ1 iff exists x

that s, h ⊨ ϕ1(x)

s, h ⊨ x ≃ y iff s(x) = s(y)

s, h ⊨ x ̸≃ y iff s(x) ̸= s(y)

s, h ⊨ ⊤ iff true

2.2 Theory of Relations in Automated Deduction

In this subsection, we develop notions around relations in the context of automated deduction.
The relations we study are binary relations on formulae in first-order logic. This provides a
unifying framework for formulating the algorithmic problems in the remainder of the report.

Substitution A substitution σ : Var → Term is a function mapping each variable to a term.
We denote by {x1 7→ t1, x2 7→ t2, · · · } the substitution σ defined as follows:

σ(x) =

{
ti, if x = xi,

x, otherwise.

We denote by tσ the term obtained by replacing every variable x in t by σ(x). We say σ is a
renaming substitution when it is a permutation on Var.
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Relations on atomic formulae In the context of automated deduction, the following relations
between atomic formulae are often considered:

unif(t, t′) iff ∃σ.tσ = t′σ

inst(t, t′) iff ∃σ.t = t′σ

gen(t, t′) iff ∃σ.tσ = t′

var(t, t′) iff ∃σ.(tσ = t′σ ∧ σ is a renaming substitution)

There are different interpretations of variables, depending on whether they are bound by
universal or existential quantifiers. The same relation, when instantiated under different inter-
pretations, can lead to different meanings in practice. For example, let P be a unary predicate
symbol, let x ∈ Var and a ∈ Const. We have inst(P (a), P (x)) by considering σ = {x 7→ a}. This
relation can provide evidence for either of the following implications:

P (a)⇒ ∃x.P (x) or ∀x.P (x)⇒ P (a)

Multisets with infinite multiplicity Given a set S, a multiset M over S is defined as a
function mapping each element in S to its multiplicity:

M : S → N ∪ {∞}

Let s be an element of S, we write □ s ∈M whenM(s) =∞. We writeM(S) for the collection
of all multisets over S.

The multiplicity of an element stands for the number of occurrence of that element in the
multiset. Multiplicity ranges over N ∪ {∞}, where the symbol ∞ means infinity. We keep the
usual order and arithmetic extended so that for all n, n <∞ and n+∞ =∞. We interpret ∞
as absorbing under subtraction so that we have ∞−∞ =∞.

Relations on multisets of atomic formulae Multisets of atomic formulae are often used to
represent more complex formulae. Depending on the context, such a multiset may be interpreted
as a separating conjunction, a classical conjunction, or a disjunction of its elements. In the
report, the intended interpretations of variables and multisets will be stated whenever they are
used.

We denote by Mσ the multiset obtained by applying the substitution σ on every element
of the multiset. It is possible to lift the relations on atomic formulae to multisets, by both
considering the relation itself and set inclusion. Concretely, we parameterize the relations by a
binary relation R over multisets and define:

unifR(M,M′) iff ∃σ.R(Mσ,M′σ)

instR(M,M′) iff ∃σ.R(M,M′σ)

genR(M,M′) iff ∃σ.R(Mσ,M′)

varR(M,M′) iff ∃σ.(R(Mσ,M′σ) ∧ σ is a renaming substitution)

As an illustrating example, let P and Q be unary predicate symbols, let x, y ∈ Var and a ∈ Const.
TakeM1 = {P (a), Q(x)},M2 = {P (a), Q(y)} andM3 = {P (x)}, we have unif=(M1,M2) as
witnessed by the substitution {x 7→ y}, and gen⊋(M2,M3) as witnessed by the substitution
{x 7→ a}.

Many automated deduction tools also make use of some total ordering relations on terms.
This ordering relation can be lifted to multisets, by sorting each multiset into a list of elements
in nondecreasing order and compare them lexicographically. Let ⪯ be a total order, we denote
by ⪯M the corresponding total order obtained this way.

7



Relations under the theory of equality The theory of equality E is a set of (dis)equalities
between terms, from which other (dis)equalities can be derived by standard logical inference
rules. The precise inference rules for equality are not specified here, as they are standard in
first-order logic with equality.

We denote by ⊢E for entailments under the equality theory E . Consequently, ⊢E t ≃ t′ says
the formula t ≃ t′ can be entailed by E . From ⊢E , we can define an equivalence relation ≡E on
atomic formulae that extends syntactic equality:

⊥ ≡E ⊥ iff true

⊤ ≡E ⊤ iff true

□ϕ ≡E □ϕ′ iff ϕ ≡E ϕ
′

P (t1, t2, · · · ) ≡E P
′(t′1, t

′
2, · · · ) iff P = P ′

and ⊢E t1 = t′1

and ⊢E t2 = t′2

and · · ·

We can exploit ≡E in the relations defined above:

unifE(t, t
′) iff ∃σ.tσ ≡E t

′σ

instE(t, t
′) iff ∃σ.t ≡E t

′σ

genE(t, t
′) iff ∃σ.tσ ≡E t

′

varE(t, t
′) iff ∃σ.(tσ ≡E t

′σ ∧ σ is a renaming substitution)

We extend ≡E to multisets of atoms as follows. Let M and M′ be two multisets of atoms.
We have:

M≡E M′ iff ∃f :M ∼−→M′ such that ∀ϕ ∈M, ϕ ≡E f(ϕ)

where f is a bijection between equivalent elements of the two multisets.
Based on a multiset equivalence relation modulo an equality theory, we are able to define

multiset inclusion relations modulo an equality theory. Let M and M′ be two multisets of
atoms. We have:

M⊆E M′ iff ∃N ⊆M′ such thatM≡E N

It says thatM is equivalent to a sub-multiset ofM′. Thus,M is included inM′ under E .

3 Reasoning on First Fragment of Iris

We follow the structure of Iris proof mode and consider a first fragment without quantifications,
(dis)equalities and disjunctions. Let P range over Pred and a range over Const∗, we define the
following grammar:

State := Atom | Atom ∗ State
Atom := ⊥ | ⊤ | P (a) | □Atom

Law := State −∗ State

The tool reasons on an initial state under a collection of laws, where states are separating
conjunctions of atoms, and laws are persistent separating implications. The initial state, the set
of laws I, the set of sorts, heap predicates and constants are given as input.
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Persistence modality The assertion □ϕ stands for persistence modality of ϕ, it can be read
“forever ϕ”, it means that ϕ holds forever, and can be used as many times as one wishes. During
proof search, ϕ can be arbitrarily duplicated once □ϕ is derived, Section 3.1 defines the proof
rules concerning persistence modality.

In practice, each law is intended to be arbitrarily duplicable, and thus should be wrapped
with □. For simplicity, we omit this annotation by treating I as containing infinite copies of
each law. This simplification does not reduce the expressive power of the logic system, since
L −∗ R can be equivalently represented as □ (L ∗ T −∗ R) together with a trigger proposition T .
Symbolically,

(L −∗ R) ≡ □ (L ∗ T −∗ R) ∗ T

3.1 Proof Search with Separating Implication

Syntactic entailment and inference rules We present a saturation-based refutational de-
cision procedure, meaning that the decision procedure tries to reach ⊥ by iteratively applying
some inference rules. Some of these rules depend on the set of laws I, and we write ⊢I for the
syntactic entailment relation between states under I.

Let L,R range over states, and let P,Q,R range over atoms. Fixing a set of laws I, the
inference rules defining ⊢I are given below. When I is not essential, we simply write ⊢.

P ∗Q ⊢ Q ∗ P ∗-Comm

(P ∗Q) ∗R ⊢ P ∗ (Q ∗R) ∗-Assoc

P ⊢ Q
P ∗R ⊢ Q ∗R

∗-Mono

P ∗Q ⊢ P ∗-Weakening

□P ⊢ P □-Elim

□P ⊢ □P ∗□P □-Dup

□P ⊢ □□P □-Idemp

(L −∗ R) ∈ I
L ⊢I R

App-Law

Here, the rules can be grouped into four categories:

� ∗-Comm, ∗-Assoc, and ∗-Mono are structural rules of the separating conjunction ∗.

� ∗-Weak is the weakening rule of affine logic, allowing extra heap predicates to be arbitrarily
discarded.

� □-Elim, □-Dup, and □-Idemp ensure that persistent modalities can be freely eliminated,
duplicated, and nested.

� App-Law encodes the main reasoning step with separating implication: whenever the left-
hand side of a law is present in the current state, it may be replaced by the right-hand
side.

Each of the above rule transforms one state into another. In practice, the only inference rule
explicitly handled by the decision procedure is App-Law. All other rules are enforced implicitly
by the representation of states, application of laws, and preprocessing steps.

� The commutativity and associativity rules of ∗ are handled by storing each state as a
multiset of atoms.

� The monotonicity rule of ∗, also called the frame rule, is realized operationally by extracting
substates when applying the rule App-Law. Given a state S and a law L −∗ R, the decision
procedure finds a decomposition S ≡M∗ L and produces the stateM∗R.
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� The elimination and duplication rules of □ are handled by storing persistent atoms as
having infinite multiplicity in the multiset representation of the state.

� The idempotence rule of □ is handled by preprocessing. Every nested occurrence of □ is
flattened to a single □ before proof search.

The combination of ∗-Mono and App-Law yields the inference rule App-Law-Frame. The
decision procedure operates by repeatedly applying this rule to the current state.

(L −∗ R) ∈ I
M ∗ L ⊢I M∗R

App-Law-Frame

We write ⊢∗ to denote the reflexive-transitive closure of ⊢. The decision procedure then tries
to decide if S ⊢∗ ⊥ holds, under a. We assume our inference system is refutationally complete:
If it finally entails ⊥, then the initial state is inconsistent. Symbolically,

S ⊢∗ ⊥ ⇒ S is inconsistent

Saturation Given a set of states S, it is saturated with respect to a given set of inference rules
if for every S ∈ S, for every S ′ such that S ⊢ S ′, S ′ also belongs to S. For a state S, we denote by
Cns(S) the set of states entailable from S, i.e. Cns(S) = {S ′ | S ⊢∗ S ′}. Cns(S) is a saturated
set of states.

Starting from an initial state S, a saturation-based proof search consists in systematically
applying the inference rule to generate all states S ′ such that S ⊢∗ S ′, thereby constructing
Cns(S). In this process, it is able to check whether S ⊢∗ ⊥ holds. Once no new states can be
derived, the search terminates. However, we note that Cns(S) may be an infinite set. In that
case, termination is ensured by imposing a depth limit.

Law application Recall that states are stored as multisets of atoms. Applying a law L −∗ R
in a state S involves checking whether L ⊆ S, and if so, computing the new state (S \ L) ∪ R
using multiset operations.

Balanced binary search trees are suitable for implementing multisets. In our system, we use
the OCaml library baby[3], which provides set union, intersection and difference operations with
complexity O

(
m log

(
n
m + 1

))
[9], where n and m denote the size of operand sets and m ≤ n.

Balanced binary search trees rely on a total ordering on elements. Instead of using lexicograph-
ical order, we compare atoms by the unique identifiers assigned to them. These identifiers are
attributed once during their construction via hash-consing[17].

3.2 Pruning the Search Tree

During the process of proof search, a state S is considered redundant if it can be logically entailed
by another known state S ′. In that case, we have Cns(S ′) ⊇ Cns(S), indicating that S provides
no more information than S ′ and can be deleted. Detecting and eliminating redundant states
helps to reduce the workload without compromising completeness.

Since redundancy detection requires solving an entailment problem, it is undecidable in sep-
aration logic. In practice, automated deduction tools introduce approximations, with the most
common being subsumption checks. A state S is subsumed by another state S ′ if S is a sub-
set of S ′. Here, multiset inclusion is used as a syntactic approximation of logical entailment.
Symbolically,

S ⊏ S ′ iff S ⊆ S ′

10



Forward subsumption checking Checking the subsumption relation for every possible pair
of existing states is computationally expensive. Instead, we restrict subsumption checks to newly
derived states. Depending on the direction of ⊏, one distinguishes between forward and backward
subsumption. In this work, we focus exclusively on forward subsumption checking, i.e. checking
if newly derived state is subsumed by existing states.

The problem of forward subsumption checking is defined as follows: Given a set S of existing
states and a fresh state S, decide if there exists S ′ ∈ S such that S ⊏ S ′ holds. Since states are
multisets, we can solve this problem by storing S as a set-trie data structure[36].

Set-trie We impose an ordering ⪯ on atoms. Each multiset is stored in the set-trie as a sorted
list of its elements. This ensures a canonical representation of multisets.

A set-trie is a tree with labeled nodes. The root is labeled with {} and other nodes with
arbitrary atomic formulae. A path from the root to certain internal node represents the list
containing elements along that path in order. Nodes carry an additional flag to indicate the
end of paths. As the name suggests, in a set-trie, common prefixes shared by sorted lists are
represented by common paths the same way as in a trie.

Figure 1 shows a set-trie containing the multisets {P (a), Q(a)}, {P (a), Q(a), R(a)}, {P (a), Q(b)},
{P (b), Q(a), R(a)}, and {P (b), Q(b)}, suppose P (a) ⪯ P (b) ⪯ Q(a) ⪯ Q(b) ⪯ R(a). Flagged
nodes are represented with rectangles.

{}

P (a)

Q(a)

R(a)

Q(b)

P (b)

Q(a)

R(a)

Q(b)

Figure 1: Example of a set-trie

Atoms of the form □P are stored as having infinite multiplicities in the multiset representa-
tion. Since it is not possible to store lists with infinitely many copies of an element in the set-trie,
we store □P as a single element, then adjust the algorithm so that looking for any number of
copies of P succeeds when □P is present. This can be understood in terms of the compressed
prefix tree (Patricia tree) representation. In this representation, a node labeled with □P denotes
an infinite sublist containing only P . We accordingly switch to the ordering ⪯□ which satisfies:

∀P ∈ Atom, P ⪯□ □P

Figure 2 shows a set-trie containing the multisets {P (a),□Q(a)}, {P (a), Q(a), R(a)}, {P (a), Q(b)},
{P (b), Q(a), R(a)}, and {P (b), Q(b)}. The path from the root to the leftmost leaf node stands
for the sorted list: [{}, P (a), Q(a),□Q(a)], which represents the multiset {P (a),□Q(a)}. It
seems at first glance that we introduce multiple representations for one multiset. However, once
a set-trie is fixed, each multiset admits a unique representation.
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{}

P (a)

Q(a)

□Q(a) R(a)

Q(b)

P (b)

Q(a)

R(a)

Q(b)

Figure 2: Example of a set-trie accounting for persistence modality

Recall we want to check the existence of superset of the query multiset. This can be done
by descending simultaneously in the set-trie and the query multiset, while allowing to skip some
elements in the set-trie. We implement two operations Insert(node, list) andQuery(node, list).
Insert(node, list) inserts the multiset represented by list into the set-trie rooted at node, and
Query(node, list) checks if there exists a superset of the multiset represented by list in the
set-trie rooted at node.

We denote by [] the empty list, list.hd the first element of list, and list.tl the remaining
part of list after removing list.hd. We denote by node.label the label of node, node.flag the
boolean flag indicating whether a multiset terminates on node, and node.children the set of
children of node in the set-trie. The two operations are presented in Algorithm 1 and Algorithm
2 respectively.

Proof search algorithm Algorithm 3 shows the proof search algorithm with forward sub-
sumption checking. It maintains two data structures: a set of existing states implemented by
set-trie, and a set of active states to be explored. At each iteration, the algorithm picks a state
from the active set, and applies to it every applicable laws to generate new states. For each new
state, it checks if the new state is subsumed by an existing state. The concrete proof-search
strategy is unspecified, although our system uses a breadth-first search, where states are visited
in order of increasing depth in the search tree.

3.3 Reasoning with Persistence Modality

So far, we have omitted another inference rule defined in Iris, saying that the persistence modality
is monotone with respect to entailment.

P ⊢ Q
□P ⊢ □Q

□-Mono

In practice, we combine it with the App-Law-Frame rule:

(L −∗ R) ∈ I
M ∗□L ⊢I M∗□R

App-Law-Frame-□

This can be seen as a strengthening of App-Law-Frame, where persistent modality prop-
agates through law application. This rule is enforced in the following way: Each time a law

12



Algorithm 1 Insert(node, list)

Require: A node in the set-trie node, a sorted list of atoms list .
Ensure: The multiset represented by list is inserted into the set-trie rooted at node.
1: if list = [] then
2: node.flag ← true
3: else
4: for all next node ∈ node.children do
5: if list.hd ∈ {next node.label ,□next node.label} then ▷ Simultaneous descent
6: Insert(next node, list.tl)
7: return
8: else if □ list.hd = next node.label then ▷ Insert list.hd before next node
9: new node ← create child of node labeled list.hd

10: node.children ← node.children \ {next node}
11: new node.children ← {next node}
12: Insert(new node, list.tl)
13: return
14: end if
15: end for
16: next node ← create child of node labeled list.hd ▷ No existing list share the prefix
17: Insert(next node, list.tl)
18: end if

Algorithm 2 Query(node, list)

Require: A node in the set-trie node, a sorted list of atoms list .
Ensure: A boolean indicating whether there exists a superset of the multiset represented by

list in the set-trie rooted at node.
1: if list = [] then
2: return true
3: else
4: has superset ← false
5: for all next node ∈ node.children do
6: if has superset then
7: break
8: else if list.hd = next node.label then
9: has superset ← Query(next node, list.tl) ▷ Simultaneous descent

10: else if list.hd ⪰□ next node.label then
11: has superset ← Query(next node, list) ▷ Skip elements in set-trie
12: end if
13: end for
14: return has superset
15: end if
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Algorithm 3 Saturation-based proof search with forward subsumption checking

Require: An initial state S, a set of laws I.
Ensure: A boolean indicating whether S is consistent.
1: S← {S} ▷ Set of existing states, implemented by set-trie
2: A← {S} ▷ Set of active states
3: while A ̸= ∅ do
4: pick C from A ▷ Current state
5: A← A \ {C}
6: if ⊥ ∈ C then
7: return false
8: end if
9: for all L −∗ R ∈ I do

10: if L ⊆ C then
11: N ← (C \ L) ∪R ▷ New state
12: if !Query(N ,S) then
13: Insert(N ,S)
14: A← A ∪ {N}
15: end if
16: end if
17: end for
18: end while
19: return true

application succeeds, the decision procedure checks whether the matched premises L was ob-
tained solely from □-atoms. If so, it adds □R to the state instead of R.

We note that □L is never consumed, due to the inference rule □-Dup: □L ⊢ □L ∗□L. In
the implementation, since states are stored in multisets, this reasoning step is realised by setting
the arithmetic rule ∞−∞ =∞ during multiset subtraction.

3.4 Decidability of the Fragment

In this fragment, the set of atomic formulae is fixed and finite. Consequently, it is possible
to give every atomic formulae an index, and represent each state as a vector of which each
element corresponds to the multiplicity of a specific atomic formula in the multiset. If we ignore
persistence modality, those numbers lie in N, and entailment problems in our system can be
encoded by the reachability problem of vector addition systems[26], a well-known decidable
problem.

When persistence modality is taken into account, some components of the vector may take
the value ∞. Due to the non-standard substraction rule in our system ∞ −∞ = ∞, naively
treating ∞ arithmetically leads to difficulties. However, we can avoid performing ∞−∞ = ∞
within a vector addition system with states.

Formally, a vector addition system with states consists of a finite set of states together with a
set of transitions, each transition specifying a change of state and an update on the vector. The
reachability problem in this system is: given an initial state and vector, whether there exists a
sequence of transitions leading to a target state and vector. This problem is also known to be
decidable.

We exploit the states to distinguish between components that are finite and infinite. The
transitions are defined so that whenever a state has infinite component, the corresponding coor-
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dinates of the transition vector become zero. This amounts to introducing specialized transition
rules that ignore substraction of infinite coordinates.

4 Handling Equality Theory and Quantification

This section presents how to extend our system to handle equality theory and quantification. In
Iris, laws typically make use of universal and existential quantifiers, and often contain proposi-
tions such as (dis)equalities, which we call pure facts. Given a state S, we denote by Pure(S)
the state consisting of pure facts in S, and Pred(S) the state consisting of other elements in S.
Let P range over Pred, x range over Var, t, t′ range over Term, and t range over Term∗. We
extend the gammar definition.

State := Atom | Atom ∗ State
Atom := ⊥ | ⊤ | t ≃ t′ | t ̸≃ t′ | P (t) | □Atom

Law := ∀x.(State −∗ State)

In this definition, a state may contain free variables. They are interpreted as existential
quantifiers over the state. For example, let x, y, z range over variables, the state x ̸≃ y ∗ P (a, x)
is interpreted as ∃(x, y). x ̸≃ y ∗ P (a, x), and the law ∀(x, y). P (x, y) −∗ (z ≃ x ∗ Q(z, y)) is
interpreted as ∀(x, y). P (x, y) −∗ (∃z. z ≃ x ∗Q(z, y)).

Both equality theory and quantification have a similar impact on the proof search algorithm,
i.e. they transform the multiset operations used in previous algorithms into more sophisticated
operations involving the relations defined in Section 2.2.

4.1 Reasoning with (Dis)Equalities

Law application In the previous inference rule, we implicitly relied on syntactic equality by
using the same symbol L in both the state and the premise of a law.

(L −∗ R) ∈ I
M ∗ L ⊢I M∗R

App-Law-Frame

With equality theory, there may exist pure facts in the state, and in the premise of laws.
Applying a law L −∗ R in a state S requires Pure(L) to be derivable from Pure(S), and the
existence of a sub-multiset of Pred(S) equivalent to Pred(L) modulo Pure(S). The inference
rule under equality theory can be written as:

(L −∗ R) ∈ I ⊢Pure(M) Pure(L) L′ ≡Pure(M) Pred(L)
M∗L′ ⊢I M∗R

App-Law-Frame-Eq

Deciding the validity of ≡E relations reduces to solving ⊢E entailments. In our implemen-
tation, such entailments are generated as the proof search proceeds. They are discharged using
the Z3 SMT solver, which implements a sound and complete decision procedure for the theory
of equality[15].

Subsumption checking The notion of subsumption must also take pure facts into account.
Intuitively, S is subsumed by S ′ if Pure(S ′) entails Pure(S), and Pred(S) is contained in
Pred(S ′). Formally, we have:

S ⊏ S ′ iff ⊢Pure(S′) Pure(S) and Pred(S) ⊆ Pred(S ′)
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Since checking the entailment relation ⊢Pure(S′) Pure(S) requires invoking an external solver,
in our implementation, we first check the multiset relation as a pre-filter. Only if this check
succeeds do we query the solver. This can be implemented by a slight modification of the set-trie
algorithms defined eariler. Specifically, we replace node.flag with the set of pure facts of each
state terminating at node. Algorithm 4 and Algorithm 5 present the modified version of insert
and query.

Algorithm 4 Insert(node, list , pure)

Require: A node in the set-trie node, a sorted list of atoms list , a set of (dis)equalities pure.
Ensure: The state represented by list and pure is inserted into the set-trie rooted at node.
1: if list = [] then
2: node.pure set ← node.pure set ∪ {pure}
3: else
4: for all next node ∈ node.children do
5: if list.hd ∈ {next node.label ,□next node.label} then ▷ Simultaneous descent
6: Insert(next node, list.tl, pure)
7: return
8: else if □ list.hd = next node.label then ▷ Insert list.hd before next node
9: new node ← create child of node labeled list.hd

10: node.children ← node.children \ {next node}
11: new node.children ← {next node}
12: Insert(new node, list.tl, pure)
13: return
14: end if
15: end for
16: next node ← create child of node labeled list.hd ▷ No existing list share the prefix
17: Insert(next node, list.tl, pure)
18: end if

4.2 Instantiation Techniques

Laws in this fragment are persistent, universally quantified separating implications, whose uni-
versal quantifiers must first be instantiated before they can be applied. Taking this instantiation
step into account, the inference rule could be written as:

∀x. (L −∗ R) ∈ I ⊢Pure(M) Pure(Lσ) L′ ≡Pure(M) Pred(Lσ)
M∗L′ ⊢I M∗Rσ

App-Law-Frame-Ins

where σ instantiates variables in x.

The unification subproblem Applying the inference rule can be reduced to computing the
substitution σ. We denote by S the current state, and L the premise of a law containing variables
to be instantiated. σ can be computed by unifying Pred(L) with the subsets of Pred(S) modulo
Pure(S). Another formulation of the problem is to decide:

gen⊆Pure(S)
(Pred(L), P red(S))

We give in Algorithm 6 the unification decision procedure. We instantiate atoms in Pred(L)
one by one. We maintain a substitution σ. Each step chooses an atom A ∈ Pred(L)σ, and tries
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Algorithm 5 Query(node, list , pure)

Require: A node in the set-trie node, a sorted list of atoms list , a set of (dis)equalities pure.
Ensure: A boolean indicating whether there exists a state subsuming the state represented by

list and pure in the set-trie rooted at node.
1: if list = [] then
2: for all desc node descendants of node do
3: for all P ∈ desc node.pure set do
4: if ⊢P pure then
5: return true
6: end if
7: end for
8: end for
9: return false

10: else
11: has superstate ← false
12: for all next node ∈ node.children do
13: if has superstate then
14: break
15: else if list.hd = next node.label then
16: has superstate ← Query(next node, list.tl, pure) ▷ Simultaneous descent
17: else if list.hd ⪰□ next node.label then
18: has superstate ← Query(next node, list, pure) ▷ Skip elements in set-trie
19: end if
20: end for
21: return has superstate
22: end if
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to unify A with every atom B ∈ Pred(S). Once success, we compose σ with the unifier of A and
B, substract B from Pred(S), and recurse on remaining atoms of Pred(L)σ.

Algorithm 6 Unification modulo (dis)equalities

Require: A state S, the premise of a law L.
Ensure: Either Fail, or a pair (σ,L′) where σ is a substitution and L′ ⊆ Pred(S) such that
⊢Pure(S) Pure(Lσ) and L′ ≡Pure(S) Pred(L)σ.

1: x← free variables of L
2: ES ← Pure(S)
3: EL ← Pure(L)
4: return Unify({}, ∅, P red(S), P red(L))
5: function Unify(σ,L′, S,L)
6: if L = ∅ then
7: if ∀x ∈ x. σ(x) ̸= x and ⊢ES (EL)σ then
8: return (σ, L′)
9: else

10: return Fail
11: end if
12: end if
13: A← next(L)
14: B ← {B ∈ S | genES (A,B) }
15: for all B ∈ B do
16: σ′ ← mguES (A, B)
17: σ̂ ← σ ∪ σ′

18: r ← Unify(σ̂,L′ ∪ {B}, S \ {B}, (L \ {A})σ′)
19: if r ̸= Fail then return r
20: end if
21: end for
22: return Fail
23: end function

The worst-case complexity is exponential in |Pred(L)|. One standard heuristic to optimize
the performance is “most-constrained-first”, namely match atoms with the largest number of
ground arguments first. We denote by next the function selecting such atom from a state. We
also denote by mgu the function computing the most general unifier of two atoms.

Term indexing The algorithm needs to retrieve from a state all elements that are instances of
a given query atom, as seen in line 14 of Algorithm 6. To get a candidate set effectively, we first
perform a pre-filtering by indexing on predicate symbols. Concretely, in the implementation we
represent the state as a two-level map: the outer map goes from predicate symbols to inner maps,
and each inner map goes from argument tuples to multiplicities. This structure is illustrated
below for the state: P (a, b) ∗ P (a, c) ∗ P (a, c) ∗□Q(x, b) ∗Q(a, y).

P 7→

{
(a, b) 7→ 1

(a, c) 7→ 2

Q 7→

{
(x, b) 7→ ∞
(a, y) 7→ 1
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4.3 Decidability of the Fragment

With the addition of equality theory and quantification, this fragment of separation logic becomes
undecidable, since it can axiomatise the two-record-field points-to predicate l 7→ (v1, v2) men-
tioned in (Section 1), whose presence along with (dis)equalities and first-order quantifiers results
in undecidability[11]. By axiomatising, we mean this predicate can be defined entirely within
the logic by a finite set of separating-implication laws, without introducing it as a primitive.

Consider the semantics of the two-record-field points-to predicate:

s, h ⊨ l 7→ (v1, v2) iff h(l) = (v1, v2)

This is an affine predicate, and can be axiomatized with the usual law of points-to predicates:

∀(l, v1, v2, v3, v4). l 7→ (v1, v2) ∗ l 7→ (v3, v4) −∗ ⊥

5 Handling Disjunction

This section presents how to add support for disjunction. Disjunction specifies different possible
shapes that a heap may have. Below shows a formula with disjunction that our system is intended
to support:

P1 ∗ P1 ∗ (P3 ∨ P4 ∨ P5) ∗ ((P6 ∗ P7 ∗ P8) ∨ (P9 ∗ P10))

Let P range over Pred, x range over Var, t, t′ range over Term, and t range over Term∗. We
extend the grammar definition as follows:

Disj := Conj ∨ Conj | Conj ∨Disj

Conj := Atom | Atom ∗ Conj
State := Conj | Conj ∗Disj

Atom := ⊥ | ⊤ | t ≃ t′ | t ̸≃ t′ | P (t) | □Atom

Law := ∀x.(State −∗ State)

As a simplification, in the following, we omit disjunctions in the premise of laws. This does
not influence the expressive power of the logic, because of the following equivalence:

□ (L ∗ (L1 ∨ L2) −∗ R) ≡ □ (L ∗ L1 −∗ R) ∗□ (L ∗ L2 −∗ R)

For simplicity, we assume there exists at most one Disj inside every state, we also take the
logic fragment defined in Section 3 with disjunctions, to avoid repetitions on quantification and
equality theory.

5.1 Proof Search with Disjunction

The addition of disjunction provides the following inference rule. Let S, T range over states, and
let C1, C2 range over Conj, we have

S ∗ C1 ⊢ T S ∗ C2 ⊢ T
S ∗ (C1 ∨ C2) ⊢ T

∨-Elim

It says that, to derive a goal from a disjunction, we must be able to derive it from each branch.
If we consider reachability of ⊥, a state with a disjunction S ∗ (C1 ∨ C2) can reach ⊥ if and

only if both branches do so. We organize proof search as an and-or graph whose nodes represent
states.

S ∗ C1 ⊢∗ ⊥ S ∗ C2 ⊢∗ ⊥
S ∗ (C1 ∨ C2) ⊢∗ ⊥
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And-or graph We consider a directed graph (V,E) where there are two kinds of nodes: ∧-
node and ∨-node. In the and-or graph used for proof search, each node is labeled by a state, and
tagged with tag ∈ {⊥,⊤}, interpreted as standard boolean values. We denote by succ(u) = {v |
(u, v) ∈ E} and pred(u) = {v | (v, u) ∈ E} the set of immediate successors and predecessors of
a node u, we denote by u.state and u.tag the state and the tag associated to the node u.

An and-or graph can be used to represent relations on boolean variables. Each node u in the
graph satisfies:

u is ∧ −node iff u.tag =
∧

u′∈succ(u)

u′.tag

u is ∨ −node iff u.tag =
∨

u′∈succ(u)

u′.tag

In our case, the property of interest is reachability of ⊥. For each node u, we define the value
of the tag as:

u.tag = ⊥ iff u.state ⊢∗ ⊥

We can say that ∧-node collects obligations that must all be fulfilled in order to reach ⊥, whereas
an ∨-node represents the proof steps where reaching ⊥ on any successor suffices.

Graph exploration The shape of the graph depends on the proof rule being applied.

� If we apply the ∨-Elim rule on a state S ∗ (C1 ∨ C2), then the corresponding node is an
∧-node labeled by S ∗ (C1 ∨ C2), with two successors labeled by S ∗ C1 and S ∗ C2.

� If we apply the App-Law rule on a state S, the corresponding node is an ∨-node labeled
by S. Each applicable law □(L −∗ R) that matches a sub-state of S gives rise to one
successor, namely the state (S \ L) ∪R.

Importantly, both rules may be applicable to the same state. In this case, we duplicate the node
into two copies: an ∧-node for ∨-Elim, and an ∨-node for App-Law. Both nodes are labeled by
the same state, but connected differently to their successors. This ensures that the search graph
captures the correct relation of every successor.

For example, consider the set of laws I = {□(A −∗ B), □(C −∗ D)} and the initial state
S = A ∗ C ∗ (E ∨ F ). We can proceed in two ways:

� ∨-Elim: it generates an ∧-node with two successors, S1 = {A∗C∗E} and S2 = {A∗C∗F}.

� App-Law: it generates an ∨-node with two successors, S3 = {B ∗ C ∗ (E ∨ F )} using
□ (A −∗ B) and S4 = {A ∗D ∗ (E ∨ F )} using □ (C −∗ D).

The exploration of the search graph is illustrated in Figure 3.
In the implementation, these two nodes are merged together to produce a more compact

graph representation. Figure 4 shows the entire search graph generated by the input above.

Tag propagation Every node has tag ⊥ by default. Once a node derives ⊥, its tag is assigned
the value ⊤, and this information must be propagated upwards. We present this procedure in
Algorithm 7.

In Algorithm 7, line 6 may be inefficient, since it recomputes the conjunction of tags over all
successor nodes each time an ∧-node is visited. This can be optimized using the watched-literal
technique widely used in SAT solvers[28].

The complete proof search decision procedure is given in Appendix B. We fix a constant
max depth specifying the maximum search depth.
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S_∨

A * C * (E ∨ F)

S_∧

A * C * (E ∨ F)
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B * C * (E ∨ F)

law 1

S_4

A * D * (E ∨ F)

law 0

S_1

A * C * E

case 0

S_2

A * C * F

case 1

Figure 3: A local of search graph

Algorithm 7 Propagate(u)

Require: A node u in the search graph that has just been tagged with ⊤.
Ensure: The search graph with updated tags propagated to predecessors of u.
1: for all v ∈ pred(u) do
2: if v.tag = ⊤ then
3: continue
4: end if
5: if v is an ∧-node then
6: v.tag ←

∧
w∈succ(v) w.tag

7: if v.tag = ⊤ then
8: Propagate(v)
9: end if

10: else ▷ v is an ∨-node
11: v.tag ← ⊤
12: Propagate(v)
13: end if
14: end for

5.2 Further Pruning the Search Graph

The existence of multiple search branches changes the notion of redundant states. Not only should
we consider the entailment relation between states, but we should also consider the branches the
states belong to. For example, consider the state S = A ∨ (A ∗B). It generates two successor
states S1 = A and S2 = A ∗B via ∨-Elim. Following the original definition of subsumption,
we have S1 ⊏ S2. However, S1 cannot be discarded, since it belongs to a different disjunctive
branch than S2.

Disjunctive branch Let G = (V,E) be an and-or graph. In the setting of saturation-based
proof search, there exists a unique node r in G with in-degree 0. A disjunctive branch B ⊆ V is
a set of nodes such that:

� B is non-empty. Either r ∈ B, or there exists an immediate successor s of an ∧-node such
that s ∈ B.

� If u ∈ B and u is an ∨-node, then succ(u) ⊆ B.
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Figure 4: The entire search graph

� If u ∈ B and u is an ∧-node, succ(u) ∩B = ∅. u is the exit point of B.

� B is a connected component of G.

Following this definition, each disjunctive branch is a maximal region of the graph delimited by
∧-nodes.

Figure 5 gives an illustration on the concept of disjunctive branches. There are three disjunc-
tive branches in this search graph, namely {0, 1, 2}, {1, 3, 5} and {3, 4, 5, 6, 7}.

Generalized forward subsumption checking With the notion of disjunctive branches, we
can refine the definition of subsumption. A state S is subsumed by another state S ′ if S is
a subset of S ′, and the set of disjunctive branches in which S occurs is contained in the set of
disjunctive branches in which S ′ occurs. Formally, let br(S) denote the set of branches containing
S, we have

S ⊏ S ′ iff S ⊆ S ′ and br(S) ⊆ br(S ′)

Due to space limitations, we do not present algorithms maintaining the set of disjunctive
branches of each node.

6 Conclusion and Discussion

In this report, I have presented the design and implementation of an automated deduction tool for
a fragment of the Iris separation logic framework. Due to the limited duration of the internship,
the current system remains prototype. Although it is not intended to become a full-fledged
automated theorem prover for separation logic, some topics remain to be further explored to
improve its utility.

The first topic concerns the performance. Automated deduction tools generally handle a large
and expanding body of knowledge, which inevitably slows down the program. In our system,
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Figure 5: Disjunctive branches

forward subsumption checking accounts for the majority of the runtime. This corresponds to the
remark by Larry Wos[40]:

· · · , after a few CPU minutes of use or the retention of a few thousand conclusions,
a reasoning program typically made deductions at less than 1% of its ability at the
beginning of a run.

From my perspective, there are two main directions to tackle performance degradation in our
system.

Efficient data structures In the current implementation, propositions are stored in balanced
binary search trees, due to their efficiency in set operations frequent in proof search. However,
this choice may not be optimal for term indexing for two reasons:

� When multiple terms need to be indexed, lookups can only be performed sequentially,
whereas some term-indexing data structures support efficient multi-term lookups.

� Balanced binary search trees organize terms according to a total ordering, which does not
exploit the structural properties shared by terms as many term-indexing techniques do.
For example, trie-based term-indexing structures allow direct access to relevant subsets
of terms sharing certain structural properties. This issue gets worse when all matching
terms must be retrieved: Binary search trees revert to the sequential lookups, whereas
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some term-indexing data structures can stop traversal at an intermediate level and return
an entire set of matching terms at once.

State-of-the-art automated deduction tools address such issues very carefully by crafting data
structures specific for each task. As described in the Handbook of Automated Reasoning [38], the
Vampire theorem prover[35] uses partially adaptive code trees[34] for forward subsumption, and
path indexing trees[32] for backward subsumption. Terms in kept clauses are stored as perfectly
shared terms, while in temporary clauses as flatterm representation[14]. In our case, finding
a design that reconciles frequent set operations with efficient term indexing and subsumption
checking remains an unresolved problem.

Clause management Modern clause-learning SAT solvers typically incorporate useful clause-
forgetting mechanisms to control complexity[23, 24]. In the context of automated deduction, such
selective forgetting of derived information becomes more complex and diverse. Subsumption
checking can be regarded as one form of clause management, other strategies include tautology
deletion, clause deletion based on age, weight or size[33], and normalization techniques such
as demodulation[41], condensation, etc. Our tool only implements a basic version of forward
subsumption, and determining an effective clause management strategy for our tool will require
empirical evaluation on realistic datasets.

The second topic is the extension of the logical language supported by the tool. In this
report, how to implement the persistence modality from Iris is explained. Together with other
separation logic connectives, they can already encode parts of the Iris library such as gen heap.v4

and token.v5. However, other constructs prevalent in Iris such as invariants, fancy updates, and
ghost states are not included. Adding support for these would enable the encoding of a much
larger portion of the Iris library, including newly developed ones.

Another step forward would be to add support for background theories, such as uninterpreted
functions and linear integer arithmetic. Iris also makes extensive use of the points-to predicate

l
q7→ v with a fractional permission q[20]. These rational numbers range from 0 to 1 and can

be combined or split via arithmetic operators. Our tool would thus benefit from supporting
bounded rational numbers. Another example is set theory, which also appears in some parts of
the Iris library.

4https://gitlab.mpi-sws.org/iris/iris/-/blob/master/iris/base logic/lib/gen heap.v
5https://gitlab.mpi-sws.org/iris/iris/-/blob/master/iris/base logic/lib/token.v
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[24] T. Krüger, J.-H. Lorenz, and F. Wörz. Too much information: Why cdcl solvers need to
forget learned clauses. PLOS ONE, 17(8):e0272967, Aug. 2022.

[25] M. Legoupil, J. Rousseau, A. L. Georges, J. Pichon-Pharabod, and L. Birkedal. Iris-mswasm:
Elucidating and mechanising the security invariants of memory-safe webassembly. Proc.
ACM Program. Lang., 8(OOPSLA2), Oct. 2024.

[26] J. Leroux. Vector addition system reachability problem: a short self-contained proof. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’11, page 307–316, New York, NY, USA, 2011. Association for
Computing Machinery.
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A Ghost Theory Example

The ghost theory handled by the tool is:

A

∗ (A −∗ B ∨ C) law0

∗ (B −∗ D) law1

∗ (C −∗ E) law2

∗ (D −∗ ⊥) law3

∗ (E −∗ H ∗ (F ∨G)) law4

∗ (F −∗ ⊥) law5

∗ (G −∗ E) law6

∗ (H ∗H −∗ ⊥) law7

Each node in the proof tree is labeled with
an index and a formula indicating the current
state. The root has the index zero, and it car-
ries the initial heap predicate A. A node is
green if the formula it carries is inconsistent.
Here, every node is inconsistent.

⊥

0

A

1

B ∨ C

law 0

2

B

case 0

3

C

case 1

4

D

law 1

5

E

law 2

law 3

6

H * (F ∨ G)

law 4

7

H * F

case 0

8

H * G

case 1

law 5

9

E * H

law 6

10

H * H * (F ∨ G)

law 4

law 7

Figure 6: Inconsistency proof for a ghost theory
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B Saturation-Based Proof Search with Disjunction

Algorithm 8 Saturation-based proof search with disjunction

Require: An initial state S, a set of laws I.
Ensure: A boolean indicating whether S is consistent.
1: K ← create new ∨-node labeled with S
2: K.depth← 0
3: K.tag ← ⊥
4: A← {K} ▷ Set of active nodes
5: while K.tag = ⊥ and A ̸= ∅ do
6: pick C from A ▷ Current node
7: A← A \ {C}
8: if K.depth ≥ max depth then
9: break

10: end if
11: if ⊥ ∈ C.state then
12: C.tag ← ⊤
13: Propagate(C)
14: else
15: for all L −∗ R ∈ I do
16: if L ⊆ C.state then
17: N ← create new ∨-node labeled with (C.state \ L) ∪R
18: N .depth← C.depth+ 1
19: N .tag ← ⊥ ▷ New node
20: N .pred← {C}
21: C.succ← C.succ ∪ {N}
22: A← A ∪ {N}
23: end if
24: end for
25: if a disjunctive part D = (D1 ∨D2 ∨ · · · ∨Dn) ∈ C.state then
26: C∧ ← create new ∧-node labeled with C.state
27: C∧.depth← C.depth
28: C∧.tag ← ⊥
29: C∧.pred← {C}
30: C.succ← C.succ ∪ {C∧}
31: for all Di ∈ D do
32: N ← create new ∨-node labeled with (C.state \ D) ∪ Di

33: N .depth← C∧.depth+ 1
34: N .tag ← ⊥ ▷ New node
35: N .pred← {C∧}
36: C∧.succ← C∧.succ ∪ {N}
37: A← A ∪ {N}
38: end for
39: end if
40: end if
41: end while
42: return ¬K.tag
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